
LECTURE – 3

SYSTEM PROGRAMMING & SYSTEM
ADMINISTRATION

SECTION -A

REFERENCES: SYSTEM PROGRAMMING BY JOHN J. DONOVAN (TMH EDITION)
&

GOOGLE SEARCH ENGINE

INTRODUCTION

 Interpreters
 Compilers
 Text editors
 Debug monitors
 Programming environment

INTERPRETERS
An interpreter may be a program that either
1. executes the source code directly
2. translates source code into some efficient intermediate

representation (code) and immediately executes this,
3. explicitly executes stored precompiled code (a code that is output

from a compiler, ready to be executed.)made by a compiler which
is part of the interpreter system

Compilers and Interpreter

 An interpreter translates some form of source code into a
target representation that it can immediately execute and
evaluate.

 The structure of the interpreter is similar to that of a
compiler, but the amount of time it takes to produce the
executable representation will vary as will the amount of
optimization (improving a system to reduce runtime,
bandwidth, memory requirements).

 The following diagram shows one representation of the
differences among compilers and interpreters

Compiler characteristics:
 spends a lot of time analyzing and processing the program

 the resulting executable is some form of machine- specific binary
code

 the computer hardware interprets (executes) the resulting code

 program execution is fast

Interpreter characteristics:
 relatively little time is spent analyzing and processing the program

 the resulting code is some sort of intermediate code

 the resulting code is interpreted by another program

 program execution is relatively slow

Compilers
 A compiler is a computer program (or set of programs) that

transforms source code written in a programming language
(the source language) into another computer language (the
target language, often having a binary form known as object
code). The most common reason for wanting to transform
source code is to create an executable program.

 The name "compiler" is primarily used for programs that
translate source code from a high-level programming
language to a lower level language (e.g., assembly
language or machine code). A program that translates from
a low level language to a higher level one is a decompiler.

TEXT EDITORS
 A text editor is a type of program used for editing plain

text files.

 Text editors are often provided with operating systems or

software development packages, and can be used to

change configuration files and programming language

source code.

 (In computing, configuration files, or config files

configure the initial settings for some computer programs.

They are used for user applications, server processes

and operating system settings.)

TYPES OF TEXT EDITORS
 Some text editors are small and simple, while others offer a

broad and complex range of functionality. For example, Unix

and Unix-like operating systems use the vi editor (or a

variant).

 Many text editors for software developers include source

code syntax highlighting and automatic completion to make

programs easier to read and write.

 Programming editors often permit one to select the name of

a subprogram or variable, and then jump to its definition and

back.

TYPICAL FEATURES
 Cut, copy, and paste – most text editors provide methods

to duplicate and move text within the file, or between files.

 Text formatting – Text editors often provide basic

formatting features like line wrap, bullet list formatting,

comment formatting, and so on.

 Undo and redo – As with word processors, text editors will

provide a way to undo and redo the last edit.

 Syntax highlighting –highlights software code and other

text that appears in an organized or predictable format.

DEBUG MONITORS
 A debug monitor, is a tool that helps to find and reduce the

number of bugs and defects in a computer program or any

electrical device within or attached to the computer in order

to make it act the way it should.

 For example, when an armored car drives up to a bank and

the guards have to transfer money from the truck to the

bank, there are special guards that stand watch to make

sure no one tries to rob them thus making the transaction go

smoothly.

 Those guards could be the debug monitors in the computer

industry.

 If the debugging monitor locates a bug or defect in any of the

equipment, it will first try to reproduce the problem which will

allow a programmer to view each string (in a program) that was

within the bug or defect range and try to fix it.

PROGRAMMING ENVIRONMENT
 DEFINITION- The programming environment is the set of processes

and programming tools used to create the program or software product.

 An integrated development environment is one in which the processes

and tools are coordinated to provide developers an convenient view of

the development process (or at least the processes of writing code,

testing it, and packaging it for use).

 An example of an IDE product is Microsoft's Visual Studio .NET. And

Oracle JDeveloper 10g and Eclipse (an IBM product) for Java

development

 An integrated development environment (IDE) is a programming

environment that has been packaged as an application program, typically

consisting of a code editor, a compiler, a debugger, and a graphical user

interface (GUI) builder.

 The IDE may be a standalone application or may be included as part of one

or more existing and compatible applications.

 IDEs provide a user-friendly framework for many modern programming

languages, such as Visual Basic, Java etc.

 IDEs for developing HTML applications are among the most commonly used.

For example, many people designing Web sites today use an IDE (such as

HomeSite, DreamWeaver, or FrontPage) for Web site development that

automates many of the tasks involved.

Program Generators

 Software program that enables an individual to
easily create a program of their own with less effort
and programming knowledge.

 With a program generator a user may only be
required to specify the steps or rules required for
his or her program and not need to write any code
or very little code.

 Some great examples of a program generator are:
Adventure Maker, Alice, Stagecast Creator, and
YoYo Games

 Alice is an innovative 3D programming environment that
makes it easy to create an animation for telling a story,
playing an interactive game, or a video to share on the web.
Alice is a teaching tool for introductory computing. It uses
3D graphics and a drag-and-drop interface to facilitate a
more engaging, less frustrating first programming
experience.

 Adventure Maker: The World's easiest way to create point-
and-click games and virtual tours for Windows, iPhone, and
iPod touch!

 Stagecast Creator: Make your own video games, share
them with friends, learn thinking skills…

APPLICATIONS
 Beginner-friendly mouse operation.

You basically don't even need a keyboard.
 Complicated environmental configuration not required.

Just start up and start creating sample software immediately.
 Since the module library provided even defines MCU peripheral circuits, you can

operate your MCU as soon as software combination is complete.
 The Sample Application Program Generator & Organizer system is C-compliant.
 The combination of supported program modules enables highly-flexible software

creation.
 Since the source file of the created software is output, it can also be used as a

base for development.
 As control of the Sample Application Program Generator & Organizer system

utilizes only the comment line, ROM/RAM cannot be increased.
 User programs can be registered in a library at the function level using the GUI..
 The program module, like sample software, is provided free of charge. Please

note that proper operation is not guaranteed.

SCOPE OF RESEARCH
A well-known problem in program generation is scoping. When identifiers
(i.e., symbolic names) are used to refer to variables, types, or functions,
program generators must ensure that generated identifiers are bound to
their intended declarations. This is the standard scoping issue in
programming languages, only automatically generated programs can
quickly become too complex and maintaining bindings manually is hard.
In this paper we present generation scoping: a language mechanism to
facilitate the handling of scoping concerns. Generation scoping offers
control over identifier scoping beyond the scoping mechanism of the
target programming language (i.e., the language in which the generator
output is expressed). Generation scoping was originally implemented as
an extension of the code template operators in the Intentional
Programming platform, under development by Microsoft Research.
Subsequently, generation scoping has also been integrated in the JTS
language extensibility tools. The capabilities of generation scoping were
invaluable in the implementation of two actual software generators:
DiSTiL (implemented using the Intentional Programming system), and P3
(implemented using JTS).

